/ / 13 min read

Large-Scale Coarse-to-Fine Object Retrieval Ontology and Deep Local Multitask Learning (Part 1)

An introduction about Object Retrieval, Attribute Learning, and Multitask learning.

Object retrieval plays an increasingly important role in video surveillance, digital marketing, e-commerce, etc. It is facing challenges such as large-scale datasets, imbalanced data, viewpoint, cluster background, and fine-grained details (attributes). This paper has proposed a model to integrate object ontology, a local multitask deep neural network (local MDNN), and an imbalanced data solver to take advantages and overcome the shortcomings of deep learning network models to improve the performance of the large-scale object retrieval system from the coarse-grained level (categories) to the fine-grained level (attributes). Our proposed coarse-to-fine object retrieval (CFOR) system can be robust and resistant to the challenges listed above. To the best of our knowledge, the new main point of our CFOR system is the power of mutual support of object ontology, a local MDNN, and an imbalanced data solver in a unified system. Object ontology supports the exploitation of the inner-group correlations to improve the system performance in category classification, attribute classification, and conducting training flow and retrieval flow to save computational costs in the training stage and retrieval stage on large-scale datasets, respectively. A local MDNN supports linking object ontology to the raw data, and an imbalanced data solver based on Matthews’ correlation coefficient (MCC) addresses that the imbalance of data has contributed effectively to increasing the quality of object ontology realization without adjusting network architecture and data augmentation. In order to evaluate the performance of the CFOR system, we experimented on the DeepFashion dataset. This paper has shown that our local MDNN framework based on the pretrained NASNet architecture has achieved better performance (14.2% higher in recall rate) compared to single-task learning (STL) in the attribute learning task; it has also shown that our model with an imbalanced data solver has achieved better performance (5.14% higher in recall rate for fewer data attributes) compared to models that do not take this into account. Moreover, MAP@30 hovers 0.815 in retrieval on an average of 35 imbalanced fashion attributes.

1. Introduction

Nowadays, object retrieval is facing some challenges and has some advantages.

Query format plays a very important role in large-scale object retrieval systems. Thus, the query format should be user-friendly and satisfy user requirements in practice.

Two query formats are popular these days: image-based format and text-based format. The text-based query format is being used widely in many searching systems. However, in many cases, it is very difficult to use query text to express the content that human would like to retrieve because words have some limitations in expressing visual information. Instead, a query image is worth more than thousand words; it allows customers to search objects without typing, and the most important thing is that it can retrieve the results based on content. Nevertheless, the limitations of the query image in expressing semantic information could decrease the overall retrieval performance. Thus, the query image and retrieval image with useful related information (regions, categories, fine-grained attributes, etc.) will be the interesting points that we have to focus on to improve the performance of the coarse-to-fine object retrieval system.

Object retrieval systems should meet the requirements of retrieving from large-scale datasets not only at the coarse level but also at the detailed level (or attribute level). For example, in face retrieval systems, facial attribute retrieval is often required. In fashion retrieval systems, fashion attribute retrieval is an indispensable requirement. In person reidentification systems, in the reidentification stage, besides using the global features of the whole human body, attribute vectors of the face and clothes are also being exploited effectively. In crowd attribute recognition systems, the useful attribute set consisted of location, participants, and activities.

Objects often have multiple attributes, and there are methods to retrieve objects at the attribute level from large-scale datasets without manual annotation. In attribute recognition, the traditional methods often waste a lot of time in selecting hand-crafted features for each attribute group during the trial-and-error process but do not always achieve the desired results. In recent years, the deep convolutional neural network (DCNN) has demonstrated high performance in many tasks in computer vision such as detection, classification, recognition, and retrieval. And without exception, the DCNN is also used for attribute learning, with only one network architecture, and the DCNN model can learn to recognize many attributes.

The performance of the DCNN-based attribute learning model will not achieve high rate if the set of attributes plays the same role in the network architecture at the output level and imbalanced data are unresolved. To exploit the inner-group correlations in coarse-grained groups or fine-grained groups, the DCNN often is revised to the deep multitask NN. The performance of classification will be improved if the elements of fine-grained category groups or fine-grained attribute groups could share similar learning features, so the slope of their error surface will become more uniform and the deep multitask learning algorithm can easily reach the global optimum effectively.

Object ontology plays an important role in category classification, attribute classification, and conducting training flow and retrieval flow to save computational costs in the training stage and retrieval stage on large-scale datasets, respectively. Thus, based on our experience in researching objects related to attributes such as face, cloth, person (reidentification), crowd (monitoring), and fast filters in large-scale object retrieval, we would like to introduce an object ontology as a hierarchical semantic tree with three levels: region, category, and attribute levels. The attribute level consisted of visual concepts and specific concepts. Visual concepts support linking common visual attributes to arbitrary objects.

We introduce an object ontology based on popular large-scale standard datasets in science community, so we hope that our ontology can meet the criterion “widely recognized in community.” And for criterion “realization,” we have proposed the local MDNN to support linking object ontology to the raw data. However, if object ontology could not be linked with high quality, it could not function effectively. And we have proposed the imbalanced data solver based on MCC to address data imbalance that has contributed effectively to increasing the quality of linking object ontology to raw data without adjusting network architecture and data augmentation.

We review some typical works based on object ontology, deep multitask neural networks, and imbalanced data solvers to highlight our contributions.

Most of the works only present the set of attributes in the form of item lists or item groups. A few works used the terminology "ontology", but to the best of our knowledge, there are not works that present the object ontology in full meaning of regions, categories, and attributes.

In [8], FashionNet handles the challenges as deformation and occlusions by explicitly predicting clothing landmarks and pooling features over the estimated landmarks, resulting in more discriminative cloth representation. The authors do not use the terminology "ontology", but the DeepFashion dataset is organized based on a hierarchical tree; it is only deployed according to fashion, and it includes a two-level tree: the first level consisted of 50 categories and the second level consisted of 5 attribute groups (texture, fabric, shape, part, and style) (it does not have color attribute). The coarse-grained groups (at the category level) or fine-grained groups (at the attribute level) have the same role in deep neural networks, and the imbalanced data solver has not been considered yet.

Our idea is to improve the performance of deep neural networks based on object ontology and imbalanced data solvers with inspiration from Gödel’s incompleteness theory. This theory shows the limitation of any consistent formal system as well as the limitation of specific methods in solving problems. When the deep network configuration method is not able to create such a large effect as in the early days it took place, it is necessary to integrate object ontology and imbalanced data solvers into deep learning. Based on appropriate interventions in inputs and outputs, we introduce a new method that can help improve the performance of the object retrieval system.

The main contributions of this paper are as follows.

  • Our proposed unified model consisted of object ontology, a local MDNN, and an imbalanced data solver to improve the performance of the large-scale object retrieval system from the coarse-grained level (categories) to the fine-grained level (attributes).

  • Our proposed object ontology is a hierarchical semantic tree consisting of three main levels: region, category, and attribute levels. It can support the optimal learning strategy and minimize the effect of semantic gap. It is useful to improve the performance of category classification, attribute classification, and conducting training flow and retrieval flow to save computational costs in the training stage and retrieval stage on large-scale datasets, respectively.

  • Our proposed local MDNN is inspired by multitask neural networks. It is based on NASNet, ResNet exploiting the local multitask neural network architecture, to improve the performance of category classification and attribute classification and for flexible system updates. The local MDNN supports linking object ontology to raw data and takes advantage of inner-group correlations of categories and attributes. If the inner-group correlations (or intergroup correlations) are exploited, the performance of classification will be improved because the elements of fine-grained categories or the fine-grained attribute group share similar learning features, the slope of their error surface becomes more uniform, and our deep local multitask learning algorithm can easily reach the global optimum effectively.

Data imbalances often occur for large-scale datasets. Data augmentation is almost impossible because each object can have multiple attributes. The solution based on the loss functions, as in [6], may be possible, but it cannot exploit transfer learning. Our proposed imbalanced data solver is inherited from MCC without adjusting network architecture and data augmentation. It is integrated into the local MDNN to improve the performance of category classification and attribute classification, but it can still exploit transfer learning to reduce computational costs in the training stage on large-scale datasets.

Our proposed query format is based on object ontology with semantic information such as regions, categories, and attributes extracted automatically from the query image. Therefore, we can express semantic information from the image to the retrieval process that the traditional methods have not implemented yet.

Figure 1. A usecase of object retrieval system.

2. Object Retrieval System

Fine-grained object retrieval is supposed to search for similar images that include specific object attributes. It declares a transition model from image retrieval to object attribute retrieval. Specifically, unlike traditional image retrieval systems where queries and results are often coarse (e.g., texts or images), fine-grained image retrieval aims to retrieve semantic information such as categories and attributes. In the fashion field, taking advantages of semantic information, an object retrieval method based on the combination of the global feature with fine-grained attribute information was introduced [8]. Inspired by previous works, we would like to propose a coarse-to-fine object retrieval system which not only takes advantage of the combination of the global feature with fine-grained attribute information but also optimizes the learning strategy based on ontology and resolves the imbalanced data problem by interfering with the output.

In addition to meeting the semantic retrieval results, the object retrieval system must handle large-scale problems to run in real time. However, most solutions did not take advantage of the power of GPUs for parallel processing which can significantly reduce feature-matching time and retrieval time. To leverage the support of GPUs, we inherited the search algorithm introduced by Johnson et al. (billion-scale similarity search with GPUs) which is a nonexhaustive similarity search. The search method perfectly suited the proposed CFOR system which further decreased searching time by creating multi-index files based on built-in object ontology.

Figure 2. Original object retrieval system.

3. Attribute Learning

Attribute learning is a backbone of CFOR, and it has strong effects on performance of fine-grained object retrieval. Therefore, attribute learning is considered one of the important parts of the learning strategy.

Attribute Learning.

This method is used for object recognition systems at the fine-grained level. Unlike learning methods that are used for the high-level concept, attribute learning supports a solution for midlevel semantic concepts or visual concepts which are known to have (more or less) correlations to each other. There are two main different learning methods: single-task learning and multitask learning.Single-task attribute learning: in this type, attributes have their own learning model. Therefore, it leads to the number of models equal to the number of attributes. Moreover, each attribute is treated separately, for which the inner-group correlations are not yet exploited. Many works are known in the fashion field by using single-task learning for fashion attributes. At that time, there were many challenges in multitask learning. A shared CNN is defined to pave a way in the final format of the multitask multilabel predictions. Therefore, multitask learning becomes possible.Multitask attribute learning: to apply this technique to attributes, samples will be collected by merging given datasets into one with one-hot binary vector demonstration. Like single-task learning, the input will be the image. Despite the output of single-task learning which is a value that describes the existence (or not) of an attribute in an image, the output of multitask learning will be a one-hot binary vector which describes the existence (or not) of a group of attributes. Rudd has shown that joint optimization over all attributes outperforms training a single independent network with the same architecture for each attribute, in which the feature space is optimized along with the classifier on a per-attribute basis, both in terms of accuracy and storage, processing efficiency. This result shows that the multitask approach is much more effective in exploiting latent correlations than independent classifiers used to learn them. Although multitask learning can yield better performance compared to single-task learning, its critical weakness is that the model cannot be reused when there is any attribute change. A retraining or additional model will be applied when a new attribute is added. Lack of reuse is the reason that multitask learning methods are not flexible for attributes that change frequently. To address these challenges, we propose that local multitask attribute learning be considered a grouping method based on object ontology to improve its reuse.

Figure 3. Attribute learning model based on deep features with SVM classifiers.
Figure 4. Attribute learning model based on adaptive attribute domain with independent deep convolutional neural networks.
Figure 5. Attribute learning model based on the end-to-end deep neural network as a shared block with adaptive loss function.

Next

In the next post, we will mention Imbalanced Data Problem and our proposal in details.

Like What You See?